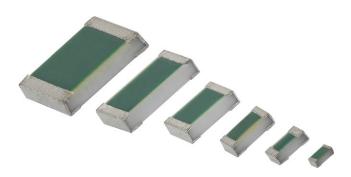
AUTOMOTIVE

RoHS

COMPLIANT

HALOGEN


FREE

<u>GREEN</u> (5-2008)

www.vishay.com

High Stability Thin Film Flat Chip Resistors

Vishay Automotive Grade TNPW e3 thin film flat chip resistors are the perfect choice for most fields of modern electronics where highest reliability and stability is of major concern. Typical applications include automotive, industrial, test and measuring equipment, and medical equipment.

FEATURES

- Rated dissipation P₇₀ up to 0.52 W for size 1206
- AEC-Q200 qualified
- Single lot date code (optional)
- Permissible film temperature up to 175 °C
- Superior temperature cycling robustness
- Excellent overall stability at different environmental conditions
- Superior moisture resistivity, |ΔR/R| < 0.1 % (85 °C; 85 % RH; 1000 h)
- Superior sulfur resistance verified according to ASTM B 809 and ANSI/EIA-977
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

- Automotive
- · Industrial equipment with enhanced requirements
- Test and measuring equipment
- Medical equipment

TECHNICAL SPECIFICA	TIONS					
DESCRIPTION	TNPW0201 e3	TNPW0402 e3	TNPW0603 e3	TNPW0805 e3	TNPW1206 e3	TNPW1210 e3
Imperial size	0201	0402	0603	0805	1206	1210
Metric size code	RR0603M	RR1005M	RR1608M	RR2012M	RR3216M	RR3225M
Resistance range	22 Ω to 40 k Ω	10 Ω to 100 k Ω	1 Ω to 332 k Ω	1 Ω to 1 M Ω	1 Ω to 2 M Ω	10 Ω to 3.01 M Ω
Resistance tolerance	± 0.5 %; ± 0.1 %		± 1	%; ± 0.5 %; ± 0.	1 %	
Temperature coefficient	± 25 ppm/K		± 50 ppm/K; ± 2	5 ppm/K; ± 15 pp	m/K; ± 10 ppm/k	(
Rated dissipation, P ₇₀ ⁽¹⁾	0.075 W	0.130 W	0.210 W	0.260 W	0.520 W	0.520 W
Operating voltage, <i>U</i> _{max.} AC _{RMS} or DC	25 V	75 V	100 V	150 V	200 V	200 V
Permissible film temperature, $\vartheta_{\text{F max.}}^{(1)}$		175 °C				
Operating temperature range (2)			-55 °C to	175 °C		
Internal thermal resistance (typical) (1)	-	90 K/W	63 K/W	38 K/W	32 K/W	-
Permissible voltage against ambient (insulation):						
1 min; U _{ins}	50 V	75 V	100 V	200 V	300 V	300 V
Failure rate: FIT _{observed}		≤ 0.1 x 10 ⁻⁹ /h				

Notes

- (1) Please refer to APPLICATION INFORMATION
- (2) Please refer to table MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION, see below

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance.

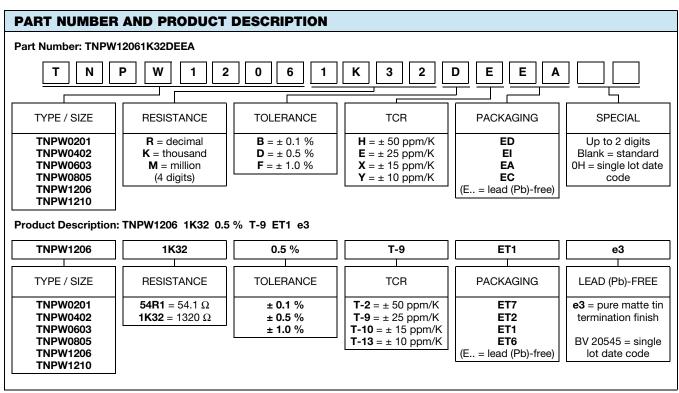
These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

Revision: 18-Feb-2025 **1** Document Number: 28758 For technical questions, contact: thinfilmchip@vishay.com

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION						
OPERATION MODE		GENERAL	POWER	ADVANCED		
	TNPW0201 e3	0.050 W	0.075 W	-		
	TNPW0402 e3	0.070 W	0.105 W	0.130 W		
Retad discipation D	TNPW0603 e3	0.110 W	0.170 W	0.210 W		
Rated dissipation, P_{70}	TNPW0805 e3	0.140 W	0.220 W	0.260 W		
	TNPW1206 e3	0.270 W	0.420 W	0.520 W		
	TNPW1210 e3	0.330 W	0.500 W	0.520 W		
Operating temperature range		-55 °C to 125 °C	°C to 125 °C -55 °C to 155 °C -55 °C to 17			
Permissible film temperature, $\vartheta_{\rm Fmax}$.		125 °C	155 °C	175 °C		
	TNPW0201 e3	22 Ω to 40 k Ω				
	TNPW0402 e3	10 Ω to 100 k Ω				
	TNPW0603 e3		1 Ω to 332 k Ω			
	TNPW0805 e3		0.075 W 0.105 W 0.130 V 0.170 W 0.210 V 0.220 W 0.260 V 0.420 W 0.520 V 0.500 W 0.520 V 0.500 W 0.520 V 155 °C 175 °C 22 Ω to 40 kΩ 10 Ω to 100 kΩ 1 Ω to 332 kΩ 1 Ω to 2 MΩ 1 Ω to 3.01 MΩ			
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ after:	TNPW1206 e3					
	TNPW1210 e3					
	1000 h	≤ 0.05 %	≤ 0.10 %	≤ 0.20 %		
	8000 h	≤ 0.10 %	≤ 0.20 %	-		
	225 000 h	≤ 0.30 %	≤ 0.60 %	-		

Note

The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead
to different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of
the circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits.
Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for
information on the general nature of thermal resistance


TEMPERATURE (COEFFICIENT AND R	ESISTANCE RANGE		
TYPE / SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES
Thirthead a	05 ///	± 0.5 %	22 Ω to 40 kΩ	F04 F400
TNPW0201 e3	± 25 ppm/K	± 0.1 %	22 Ω to 25 kΩ	E24; E192
		± 1 %		E24; E96
	± 50 ppm/K	± 0.5 %	10 Ω to 100 kΩ	
		± 0.1 %	47 Ω to 100 kΩ	E24; E192
		± 1 %		E24; E96
TNPW0402 e3	± 25 ppm/K	± 0.5 %	10 Ω to 100 kΩ	
		± 0.1 %		
	± 15 ppm/K		47 Ω to 100 kΩ	E24; E192
	± 10 ppm/K	± 0.1 %	22 Ω to 40 kΩ 22 Ω to 25 kΩ 10 Ω to 100 kΩ 47 Ω to 100 kΩ 10 Ω to 100 kΩ 47 Ω to 100 kΩ 1 Ω to 332 kΩ 3.5 Ω to 332 kΩ 47 Ω to 332 kΩ 47 Ω to 332 kΩ 1 Ω to 1 MΩ 3.5 Ω to 1 MΩ 1 Ω to 1 MΩ 3.5 Ω to 1 MΩ 1 Ω to 1 MΩ 3.5 Ω to 2 MΩ 1 Ω to 2 MΩ 47 Ω to 2 MΩ 47 Ω to 2 MΩ 47 Ω to 2 MΩ 10 Ω to 3.01 MΩ 47 Ω to 2.13 MΩ 10 Ω to 3.01 MΩ	
	7.	± 1 %		E24; E96
	± 50 ppm/K	± 0.5 %	1 Ω to 332 kΩ	
		± 0.1 %	3.5 Ω to 332 kΩ	E24; E192
		± 1 %		E24; E96
TNPW0603 e3	± 25 ppm/K	± 0.5 %	1 Ω to 332 kΩ	,
			3.5 Ω to 332 kΩ	
	± 15 ppm/K	$\pm 0.1 \%$ 3.5 Ω to 332 kΩ $\pm 0.1 \%$ 47 Ω to 332 kΩ $\pm 1 \%$ 1 Ω to 1 MΩ $\pm 0.5 \%$ $\pm 0.1 \%$ 3.5 Ω to 1 MΩ $\pm 1 \%$	E24; E192	
	± 10 ppm/K	± 0.1 %	47 Ω to 332 kΩ	
	7.	± 1 %		E24; E96
	± 50 ppm/K	± 0.5 %	$-$ 1 Ω to 1 $M\Omega$	
		± 0.1 %	3.5 Ω to 1 MΩ	E24; E192
		± 1 %		E24; E96
TNPW0805 e3	± 25 ppm/K	± 0.5 %	1 Ω to 1 MΩ	
		± 0.1 %		
	± 15 ppm/K		$-$ 3.5 Ω to 1 M Ω	E24; E192
	± 10 ppm/K	± 0.1 %	$ - \frac{1 \Omega \text{ to 1 M}\Omega}{3.5 \Omega \text{ to 1 M}\Omega} $ $ - \frac{1 \Omega \text{ to 1 M}\Omega}{3.5 \Omega \text{ to 1 M}\Omega} $ $ - \frac{3.5 \Omega \text{ to 1 M}\Omega}{3.5 \Omega \text{ to 1 M}\Omega} $	
		± 1 %		E24; E96
	± 50 ppm/K	± 0.5 %	$\begin{array}{c} 3.5 \ \Omega \ \text{to} \ 332 \ \text{k}\Omega \\ \\ -1 \ \Omega \ \text{to} \ 332 \ \text{k}\Omega \\ \\ 3.5 \ \Omega \ \text{to} \ 332 \ \text{k}\Omega \\ \\ 47 \ \Omega \ \text{to} \ 332 \ \text{k}\Omega \\ \\ -1 \ \Omega \ \text{to} \ 1 \ \text{M}\Omega \\ \\ \hline -1 \ \Omega \ \text{to} \ 1 \ \text{M}\Omega \\ \\ -1 \ \Omega \ \text{to} \ 1 \ \text{M}\Omega \\ \\ -1 \ \Omega \ \text{to} \ 1 \ \text{M}\Omega \\ \\ -1 \ \Omega \ \text{to} \ 1 \ \text{M}\Omega \\ \\ -1 \ \Omega \ \text{to} \ 2 \ t$	
		± 0.1 %	3.5 Ω to 2 MΩ	E24; E192
		± 1 %		E24; E96
TNPW1206 e3	± 25 ppm/K	± 0.5 %	$-$ 1 Ω to 2 M Ω	<u></u>
		± 0.1 %	$3.5~\Omega$ to $2~M\Omega$	
	± 15 ppm/K			E24; E192
	± 10 ppm/K	± 0.1 %	47 Ω to 2 M Ω	
		± 1 %		E24; E96
	± 50 ppm/K	± 0.5 %	$-$ 10 Ω to 3.01 M Ω	<u> </u>
		± 0.1 %	47 Ω to 2.13 MΩ	E24; E192
		± 1 %		E24; E96
TNPW1210 e3	± 25 ppm/K	± 0.5 %	10 Ω to 3.01 MΩ	,
	- p.p. 1911	± 0.1 %		
	± 15 ppm/K		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E24; E192
	± 10 ppm/K	± 0.1 %		
	_ 10 ppii/it			

PACKAGING							
TYPE / SIZE CODE QI		QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS	
TNPW0201 e3	ET2 = EI	5000	Paper tape according IEC 60286-3, Type 1a	8 mm	2 mm 4 mm	Ø 180 mm / 7"	
	ET7 = ED	10 000					
	ET2 = EI	5000				9 180 111117 7	
TNPW0402 e3	ET7 = ED	10 000					
TNPW0603 e3 TNPW0805 e3 TNPW1206 e3 TNPW1210 e3	ET1 = EA	5000				Ø 180 mm / 7"	
	ET6 = EC (1)	20 000			4 mm	Ø 330 mm / 13"	

Note

 $^{^{(1)}}$ 20 000 pieces packaging is available only for resistors with TCR \pm 25 ppm/K and \pm 50 ppm/K

Note

• The product can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION

www.vishay.com

Vishay

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of special metal alloy is deposited on a high grade ceramic substrate (Al₂O₃) and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilize the trimming result. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating. The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. This includes full screening for the elimination of products with a potential risk of early life failures (feasible for $R \ge 10 \Omega$). Only accepted products are laid directly into the tape in accordance with IEC 60286-3, Type 1a (1).

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapour phase as shown in **IEC 61760-1** ⁽¹⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system ⁽²⁾.

The resistors are RoHS-compliant, the pure matte tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (3)
- The Global Automotive Declarable Substance List (GADSL) (4)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (5) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

RELATED PRODUCTS

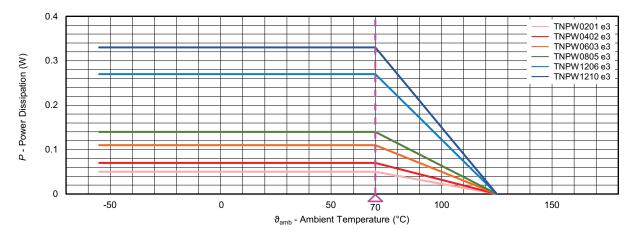
The TNPW with SnPb termination plating is designed for those applications, where lead bearing terminations are mandatory. For ordering TNPW with SnPb terminations please refer to latest edition of datasheet TNPW (www.vishay.com/doc?31006).

TNPU e3 ultra precision thin film flat chip resistors combine the proven reliability of TNPW e3 products with a most advanced level of precision and stability (www.vishay.com/doc?28779).

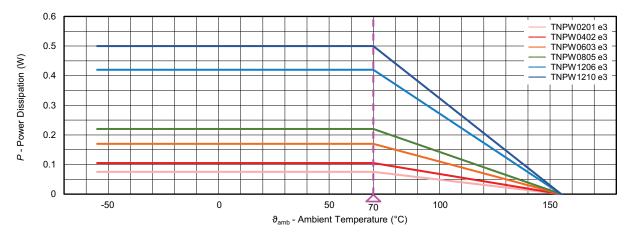
TNPS ESCC high-reliability thin film chip resistors are the premium choice for design and manufacture of equipment, where matured technology and proven reliability are of utmost importance. They are regularly used in communication and research satellites and fit equally well into aircraft and military electronic systems.

Approval of the TNPS ESCC products is granted by the European Space Components Coordination and registered in the ESCC Qualified Parts List, REP005 (www.vishay.com/doc?28789).

TNPV e3 High Voltage Thin Film Flat Chip Resistors are designed for most fields of modern electronics where precision, reliability and stability at high operating voltage are primary concerns (www.vishay.com/doc?28881).

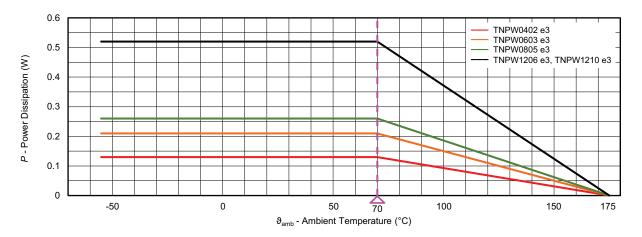

Notes

- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) For details refer to application note "Preserving Precision: Conformal Coatings Applied to Thin Film Resistors" www.vishay.com/doc?28960
- (3) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
- (4) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org
- (5) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table

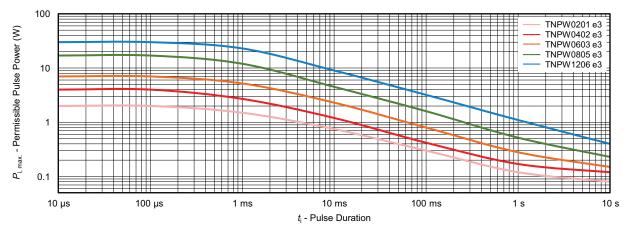


FUNCTIONAL PERFORMANCE

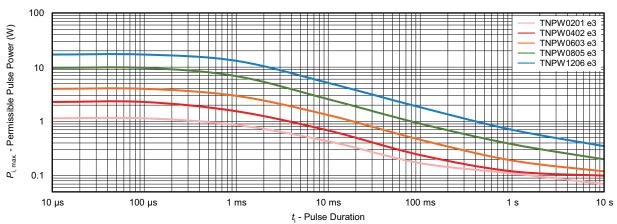
PERFORMANCE IN SULFUR-CONTAINING AMBIANCE						
TEST NAME	HUMID SULFUR VAPOR TEST FOS-90	DRY SULFUR TEST FOS-105				
Reference specification	ASTM B 809	ANSI/EIA-977				
Test conditions (temperature, humidity)	90 °C ± 2 °C 76 % to 95 % RH	105 °C ± 2 °C RH not specified, not applicable				
Aggressive agent	Sulfur (saturated vapor)	Sulfur, sublimed				
Failure criteria in VI under magnification	Silver sulfide growth: length shall be < 50 µm	Not applicable				
Failure criteria in electrical test	≤ (± 1 % R + 0.05 Ω)	≤ (± 1 % R + 0.05 Ω)				
Test duration	1000 h	1000 h				



Derating - General Operation

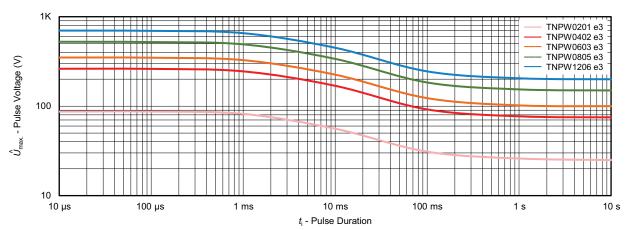


Derating - Power Operation

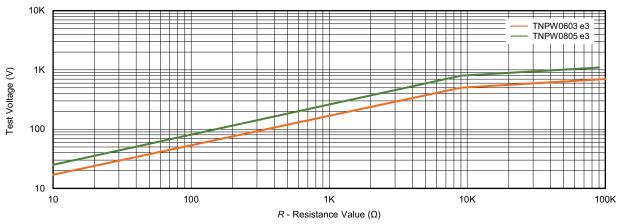


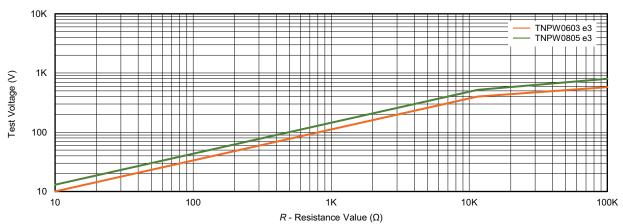
Derating - Advanced Operation

Maximum pulse load, single pulse; applicable if $\overline{P} \to 0$ and n \leq 1000 and $\hat{U} \leq \hat{U}_{\max}$; for permissible resistance change \pm (0.5 % R + 0.05 Ω)


Single Pulse

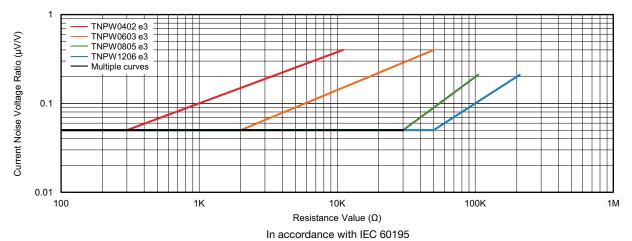
Maximum pulse load, continuous pulse; applicable if $\overline{P} \le P$ ($\vartheta_{\rm amb}$) and $\hat{U} \le \hat{U}_{\rm max}$; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

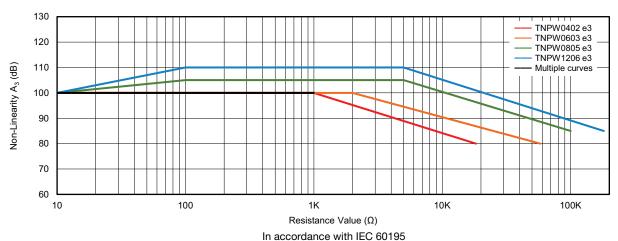

Continuous Pulse


Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} \leq \hat{P}_{\max}$; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

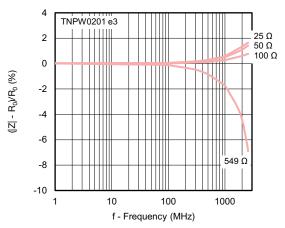
Pulse Voltage

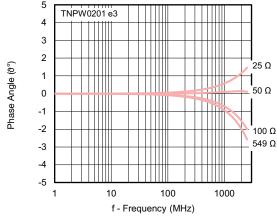
Pulse load rating in accordance with EN 60115-1 clause 4.27; 1.2 μ s/50 μ s; 5 pulses at 12 s intervals; for permissible resistance change \pm (0.5 % R + 0.05 Ω)


1.2/50 Pulse


Pulse load rating in accordance with EN 60115-1 clause 4.27; 10 μ s/700 μ s; 10 pulses at 1 minute intervals; for permissible resistance change \pm (0.5 % R + 0.05 Ω)

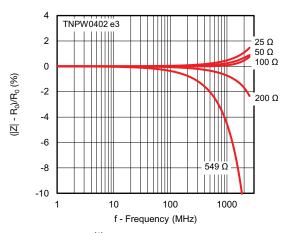
10/700 Pulse



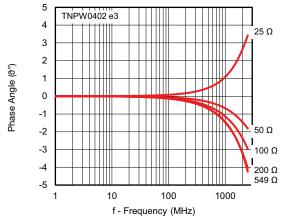


Current Noise Voltage Ratio

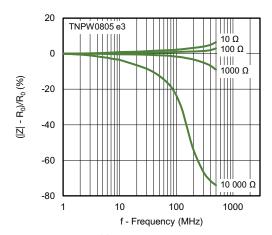
Non-Linearity


HF Performance (1)

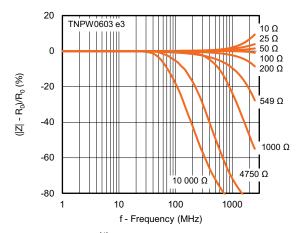
HF Performance (1)

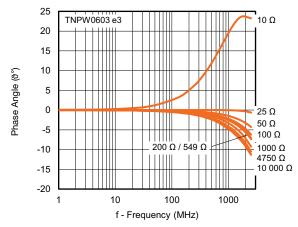

Note

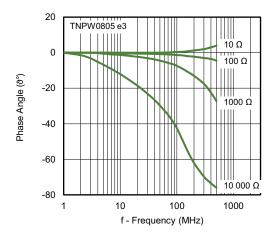
(1) Typical figures, HF-characteristic also depends on termination and circuit design



HF Performance (1)


HF Performance (1)


HF Performance (1)


(1) Typical figures, HF-characteristic also depends on termination and circuit design

HF Performance (1)

HF Performance (1)

HF Performance (1)

TEST AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8, sectional specification

EN 140401-801, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. The detail specification EN 140401-801 does not cover case size 0201. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

The testing also covers most of the requirements specified by EIA / ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar) A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

EN 60115-1 CLAUSE	IEC 60068-2 (1) TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\triangle R$	
			Stability for product types:		
			TNPW0201 e3	22 Ω to 40 k Ω	
			TNPW0402 e3	10 Ω to 100 kΩ	
			TNPW0603 e3	1 Ω to 332 kΩ	
			TNPW0805 e3	1 Ω to 1 M Ω	
			TNPW1206 e3	1 Ω to 2 M Ω	
			TNPW1210 e3	10 Ω to 3.01 M Ω	
6.1	-	Resistance	-	\pm 1 %; \pm 0.5 %; \pm 0.1 %	
6.2	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 125 / 20) °C	± 50 ppm/K; ± 25 ppm/K; ± 15 ppm/K; ± 10 ppm/K	
		Endurance at 70 °C: general	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;		
			70 °C; 1000 h	\pm (0.05 % R + 0.01 Ω)	
		operation mode	70 °C; 8000 h	$\pm (0.1 \% R + 0.02 \Omega)$	
			70 °C; 225 000 h	$\pm (0.3 \% R + 0.05 \Omega)$	
7.1 -	-	Endurance at 70 °C:	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;		
		power	70 °C; 1000 h	\pm (0.1 % R + 0.01 Ω)	
		operation mode	70 °C; 8000 h	$\pm (0.2 \% R + 0.02 \Omega)$	
			70 °C; 225 000 h	$\pm (0.6 \% R + 0.05 \Omega)$	
		Endurance at 70 °C: advanced	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off;		
		mode	70 °C; 1000 h	$\pm (0.2 \% R + 0.05 \Omega)$	
		Endurance at	125 °C; 1000 h	$\pm (0.05 \% R + 0.01 \Omega)$	
7.3	-	upper category	155 °C; 1000 h	\pm (0.1 % R + 0.02 Ω)	
		temperature	175 °C; 1000 h	$\pm (0.25 \% R + 0.05 \Omega)$	

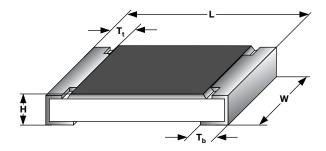
www.vishay.com

EN 60115-1 CLAUSE	IEC 60068-2 (1) TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (ΔR)
			Stability for product types:	
			TNPW0201 e3	22 Ω to 40 k Ω
			TNPW0402 e3	10 Ω to 100 kΩ
			TNPW0603 e3	1 Ω to 332 kΩ
			TNPW0805 e3	1 Ω to 1 MΩ
			TNPW1206 e3	1 Ω to 2 MΩ
			TNPW1210 e3	10 Ω to 3.01 MΩ
10.4	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	$\pm (0.1 \% R + 0.01 \Omega)$
10.5	67 (Cy)	Damp heat, steady state accelerated: general operation mode	(85 ± 2) °C (85 ± 5) % RH $U = \sqrt{0.1 \times P_{70} \times R}$; $U \le 0.3 \times U_{\text{max}}$; 1000 h	\pm (0.1 % R + 0.01 Ω)
-	1 (Ab)	Cold	-55 °C; 2 h	± (0.05 % R + 0.01 Ω)
10.1	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; LCT = -55 °C; UCT = 155 °C; 1000 cycles	± (0.1 % R + 0.01 Ω)
0.1		Short time overload: general operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; whichever is the less severe; 5 s	± (0.05 % R + 0.01 Ω)
8.1	-	Short time overload: power operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; whichever is the less severe; 5 s	± (0.1 % R + 0.01 Ω)
0.0		Single pulse high voltage overload: general operation mode	Severity no. 4: $U = 10 \text{ x} \sqrt{P_{70} \text{ x } R}$ or $U = 2 \text{ x } U_{\text{max.}}$; whichever is the less severe; 10 pulses 10 µs/700 µs	\pm (0.5 % R + 0.02 Ω) no visible damage
8.2	-	Single pulse high voltage overload: power operation mode	Severity no. 4: $U = 10 \text{ x} \sqrt{P_{70} \text{ x } R}$ or $U = 2 \text{ x } U_{\text{max}}$; whichever is the less severe; 10 pulses 10 µs/700 µs	\pm (1 % R + 0.02 Ω) no visible damage
0.4(0)		Periodic electric overload: general operation mode	$U = \sqrt{15 \times P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; 0.1 s on; 2.5 s off; whichever is the less severe; 1000 cycles	\pm (0.5 % R + 0.05 Ω) no visible damage
8.4 (2)	-	Periodic electric overload: power operation mode	$U = \sqrt{15 \times P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; 0.1 s on; 2.5 s off; whichever is the less severe; 1000 cycles	\pm (1 % R + 0.05 Ω) no visible damage $^{(2)}$

www.vishay.com

EN 60115-1 IEC 60068-2 (1) TEST METHOD				REQUIREMENTS PERMISSIBLE CHANGE (ΔR)	
			Stability for product types:		
			TNPW0201 e3	22 Ω to 40 k Ω	
			TNPW0402 e3	10 Ω to 100 kΩ	
			TNPW0603 e3	1 Ω to 332 kΩ	
			TNPW0805 e3	1 Ω to 1 MΩ	
			TNPW1206 e3	1 Ω to 2 M Ω	
			TNPW1210 e3	10 Ω to 3.01 M Ω	
3.5	-	Electro static discharge (human body model)	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. (equivalent to MIL-STD-883, method 3015) TNPW0201 e3: 250 V TNPW0402 e3: 400 V TNPW0603 e3: 1000 V TNPW0805 e3: 1500 V TNPW1206 e3: 2000 V	$\pm (0.5~\%~R + 0.05~\Omega)$	
9.11	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h	\pm (0.05 % R + 0.01 Ω) no visible damage	
			Solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered);	
11.1	58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux (235 ± 3) °C; (2 ± 0.2) s	no visible damage	
11.2	58 (Td)	Resistance to soldering heat	Solder bath method; (260 ± 5) °C; (10 ± 1) s ⁽³⁾	± (0.02 % R + 0.01 Ω)	
11.3	45 (XA)	Component solvent resistance	Isopropyl alcohol + 50 °C; method 2	No visible damage	
			TNPW0201 e3: 2 N		
9.7	21 (Ue ₃)	Shear	TNPW0402 e3 and TNPW0603 e3: 9 N	No visible damage	
	(0)	(adhesion)	TNPW0805 e3, TNPW1206 e3, and TNPW1210 e3: 45 N	 	
9.8	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	\pm (0.05 % R + 0.01 Ω) no visible damage, no open circuit in bent position	
12.2	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}; 60 \pm 5 {\rm s}$	No flashover or breakdown	
12.4	-	Flammability	IEC 60695-11-5 ⁽¹⁾ , needle flame test; 10 s	No burning after 30 s	

Notes


⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

⁽²⁾ Periodic electric overload test for power operation mode not applicable for case size 0201

⁽³⁾ For TNPW0201 e3 only similar to DIN EN 60115-8 test procedure. Due to the components small size they were fixed by glue previous to testing instead of applying tweezers

DIMENSIONS AND MASS								
TYPE / SIZE	L (mm)	W (mm)	H (mm)	T _t / T _b (mm)	MASS (mg)			
TNPW0201 e3	0.6 ± 0.05	0.3 ± 0.05	0.23 ± 0.03	0.12 ± 0.05	0.14			
TNPW0402 e3	1.0 ± 0.05	0.5 ± 0.05	0.35 ± 0.05	0.2 ± 0.10	0.65			
TNPW0603 e3	1.55 ± 0.05	0.85 ± 0.10	0.45 ± 0.10	0.3 ± 0.20	2			
TNPW0805 e3	2.0 ± 0.1	1.25 ± 0.15	0.45 ± 0.10	0.4 ± 0.20	5.5			
TNPW1206 e3	3.2 + 0.1 / - 0.2	1.6 ± 0.15	0.55 ± 0.10	0.5 ± 0.25	10			
TNPW1210 e3	3.2 + 0.1 / - 0.2	2.45 ± 0.15	0.60 ± 0.15	0.5 ± 0.25	16			

SOLDERING RECOMMENDATIONS

For recommended solder pad dimensions please refer to www.vishay.com/doc?28950. For recommended soldering profiles please refer to www.vishay.com/doc?31090.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.