

Film Capacitors

Metallized Polyester Film Capacitors (MKT)

Series/Type: B32593, B32594Date: December 2018

© TDK Electronics AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

General purpose (stacked/wound)

Typical applications

- Compact fluorescent lamps (CFL)
- Blocking
- Coupling, decoupling
- Bypassing

Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1:2013): 55/100/56

Features

- High pulse strength
- High contact reliability
- RoHS-compatible

Construction

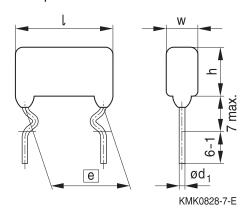
- Dielectric: polyethylene terephthalate (polyester, PET)
- Wound capacitor technology
- Epoxy resin coating (UL 94 V-0)

Terminals

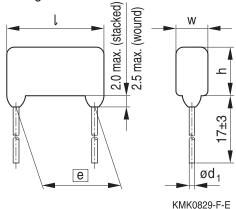
- Crimped wire leads, lead-free tinned, lead length 6 −1 mm or min. 20 mm
- Straight wire leads, lead-free tinned, lead length 17 ±3 mm
- Different lead spacings (reduced and enlarged) available, lead length 6 −1 mm

Marking

Manufacturer's logo,
rated capacitance (coded),
capacitance tolerance (code letter),
rated DC voltage,
additional for lead spacing ≥15 mm:
style, type, date of manufacture (coded)


Delivery mode

Bulk (untaped)


Taped (Ammo pack or reel) for lead spacing ≤22.5 mm. For notes on taping, refer to chapter "Taping and packing".

Dimensional drawing

Crimped leads

Straight leads

Dimensions in mm

Lead spacing	Lead diameter	Type
<i>e</i> ±0.8	d₁ ±0.05	
22.5	0.8	B32593
27.5	0.8	B32594

General purpose (stacked/wound)

Overview of available types

Lead spacing	d spacing 22.5 mm				27.5 mm			
Туре	B32593			B32594			_	
Page	4	4 5			5			
V _R (V DC)	100	250	400	630	100	250	400	630
V _{RMS} (V AC)	63	160	200	200	63	160	200	220
C _R (μF)								
0.10								
0.15								
0.22								
0.33								
0.47								
0.68								
1.0								
1.5								
2.2								
3.3								
4.7								
6.8								
10								

Lead configurations

Series	Standard	Reduced	Enlarged	Straight
B32593	22.5 mm	17.5 / 20 mm	25 mm	22.5 mm
B32594	27.5 mm	25 mm	_	27.5 mm

General purpose (wound)

Ordering codes and packing units (lead spacing 22.5 mm)

V_{R}	V_{RMS}	C_R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f ≤60 Hz		$w \times h \times I$	(composition see	pack		
V DC	V AC	μF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ
100	63	1.5	$7.0\times14.0\times26.5$	B32593C1155+***	2000	2800	2000
		2.2	$8.5 \times 15.0 \times 26.5$	B32593C1225+***	1800	2400	2000
		3.3	$10.0\times16.5\times26.5$	B32593C1335+***	1520	2160	800
		4.7	$11.5\times18.5\times26.5$	B32593C1475+***	1200	1800	800
		6.8	$13.0\times21.5\times26.5$	B32593C1685+***	1120	1520	800
250	160	0.68	$7.0\times13.0\times26.5$	B32593C3684+***	2000	2800	2000
		1.0	$7.0\times15.5\times26.5$	B32593C3105+***	2000	2800	2000
		1.5	$8.5 \times 17.0 \times 26.5$	B32593C3155+***	1600	2320	800
		2.2	$10.0\times18.5\times26.5$	B32593C3225+***	1400	2000	800
400	200	0.22	$6.5\times13.0\times26.5$	B32593C6224+***	2020	3200	2000
		0.33	$7.0\times14.0\times26.5$	B32593C6334+***	2020	3200	2000
		0.47	$7.0\times16.5\times26.5$	B32593C6474+***	2000	2800	2000
630	200	0.10	$7.0\times14.0\times26.5$	B32593C8104+***	2000	2800	2000
		0.15	$7.5\times16.0\times26.5$	B32593C8154+***	1800	2600	1000
		0.22	$8.5\times17.0\times26.5$	B32593C8224+***	1600	2320	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $M = \pm 20\%$

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Ammo pack

189 = Reel

010 = Untaped (standard lead length 6 - 1 mm)

008 = Untaped straight (lead length 17±3 mm)

General purpose (wound)

Ordering codes and packing units (lead spacing 27.5 mm)

$\overline{V_R}$	V_{RMS}	C _R	Max. dimensions	Ordering code	Untaped
	f ≤60 Hz		$w \times h \times I$	(composition see below)	
V DC	V AC	μF	mm		pcs./MOQ
100	63	4.7	$10.5\times18.5\times31.5$	B32594C1475+***	800
		6.8	$12.5 \times 21.0 \times 31.5$	B32594C1685+***	800
		10	$17.0 \times 22.0 \times 31.5$	B32594C1106+***	800
250	160	1.5	$8.5 \times 16.0 \times 31.5$	B32594C3155+***	2000
		2.2	$10.0 \times 17.5 \times 31.5$	B32594C3225+***	2000
		3.3	$12.0 \times 19.5 \times 31.5$	B32594C3335+***	800
		4.7	$14.0 \times 21.5 \times 31.5$	B32594C3475+***	800
		6.8	$15.0 \times 25.0 \times 31.5$	B32594C3685+***	800
400	200	0.68	$8.0 \times 16.0 \times 31.5$	B32594C6684+***	1000
		1.0	$9.5 \times 18.0 \times 31.5$	B32594C6105+***	1000
		1.5	$11.5 \times 20.0 \times 31.5$	B32594C6155+***	1000
		2.2	$13.5 \times 22.0 \times 31.5$	B32594C6225+***	800
630	220	0.33	$8.0 \times 15.0 \times 31.5$	B32594C8334+***	1000
		0.47	$10.0 \times 16.0 \times 31.5$	B32594C8474+***	800
		0.68	$10.5\times18.0\times31.5$	B32594C8684+***	800

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $M = \pm 20\%$

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

010 =Untaped (standard lead length 6 -1 mm)

008 = Untaped straight (lead length 17±3 mm)

General purpose (stacked/wound)

Technical data

Reference standard: IEC 60384-2:2005. All data given at T = 20 $^{\circ}$ C, unless otherwise specified.

		ata giveir at i				
Operating temperature range	Max. operatin	g temperature	T _{op,max}	+125 °C	,	
	Upper catego	ry temperature	e T _{max}	+100 °C	;	
	Lower catego	ry temperature	e T _{min}	-55 °C	;	
	Rated temper	ature T _R		+85 °C	;	
Dissipation factor tan δ (in 10 ⁻³)	at	$C_R \le 0.1 \ \mu F$	$0.1 \mu F < 0$	C _R ≤1 μF	C _R > 1 μF	
at 20 °C (upper limit values)	1 kHz	8	10		10	
	10 kHz	15	20		_	
	100 kHz	30	_		_	
Insulation resistance R _{ins}	V_R	C _R ≤ 0.33 μF		C _R > 0.33	μF	
or time constant $\tau = C_R \cdot R_{ins}$	100 V DC	3750 MΩ		1250 s	·	
at 20 °C, rel. humidity ≤ 65%	≥ 250 V DC	7500 MΩ		2500 s		
(minimum as-delivered values)						
DC test voltage	$1.4 \cdot V_R$, 2 s					
Category voltage V _C	T _{op} (°C) DC voltage derating		AC voltage derating			
(continuous operation with	$T_{op} \le 85$	$V_C = V_R$		$V_{C,RMS} = V_{RMS}$		
V_{DC} or V_{AC} at $f \le 60$ Hz)	85 <t<sub>op≤100</t<sub>	$V_{\rm C} = V_{\rm R} \cdot (165 - T_{\rm op})/80$		$V_{C,RMS} = V_{RMS} \cdot (165 - T_{op})/80$		
Operating voltage V_{op} for	T _{op} (°C)	DC voltage (n	nax. hours)	AC voltag	e (max. hours)	
short operating periods	$T_{op} \le 100$	$V_{op} = 1.25 \cdot V$	_C (2000 h)	$V_{op} = 1.0$	· V _{C,RMS} (2000 h)	
$(V_{DC} \text{ or } V_{AC} \text{ at } f \le 60 \text{ Hz})$	100 <t<sub>op≤125</t<sub>	$V_{op} = 1.25 \cdot V$	_C (1000 h)	$V_{op} = 1.0 \cdot V_{C,RMS} (1000 h)$		
Reliability:						
Failure rate λ	2 fit (≤ 1 · 10 ⁻⁹	⁹ /h) at 0.5 · V _F	, 40 °C			
Service life t _{SL}	100 000 h at	1.0 · V _R , 85 °C				
	For conversion to other operating conditions and temperatures,					
	refer to chapte	er "Quality, 2 I	Reliability".			
Failure criteria:						
Total failure	Short circuit o	r open circuit				
Failure due to variation	Capacitance change ∆C/C			> 10%		
of parameters	Dissipation factor tan δ			> 2 · upper limit value		
	Insulation resistance R _{ins}			< 150 MΩ (C_R ≤ 0.33 μF)		
	or time constant $\tau = C_R \cdot R_{ins}$			< 50 s	$(C_R > 0.33 \mu F)$	

General purpose (stacked/wound)

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

" k_0 " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.

Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse.

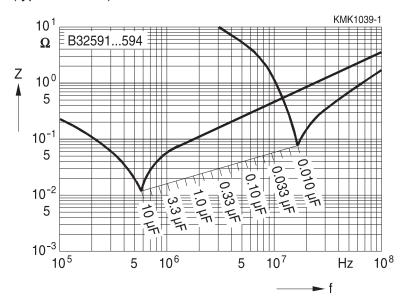
For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency.

dV/dt values

Lead spacing		22.5 mm	27.5 mm
Technology		Wound	Wound
$\overline{V_R}$	V _{RMS}		
V DC	V AC	dV/dt in V/μs	
100	63	2.5	2
250	160	4	3
400	200	7	5
630	200	10	_
630	220	_	8

k₀ values

Lead spacing	g	22.5 mm	27.5 mm	
Technology		Wound	Wound	
V_R	V _{RMS}			
V DC	V AC	k ₀ in V²/μs		
100	63	500	400	
250	160	2 000	1 500	
400	200	5 600	4 000	
630	200	12 600	_	
630	220	_	10 000	

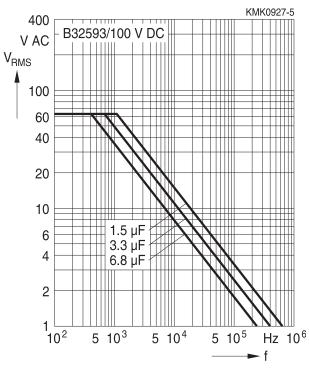


General purpose (stacked/wound)

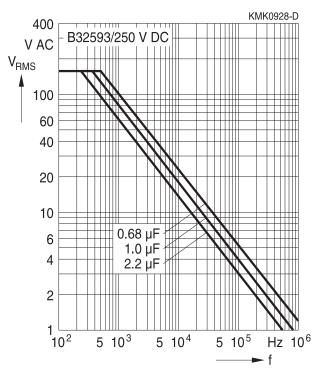
Impedance Z versus frequency f

(typical values)

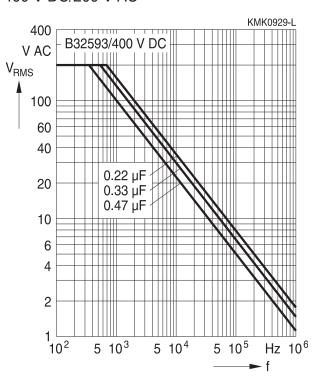
General purpose (wound)

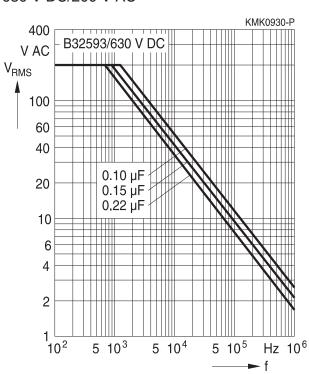


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤55 °C)


For $T_A > 55$ °C, please refer to "General technical information", section 3.2.3.

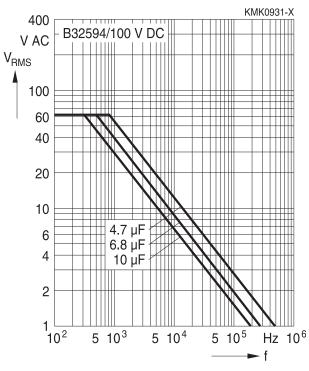
Lead spacing 22.5 mm


100 V DC/63 V AC

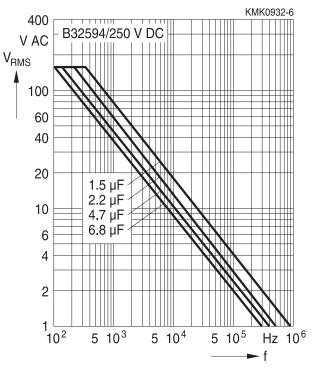

250 V DC/160 V AC

400 V DC/200 V AC

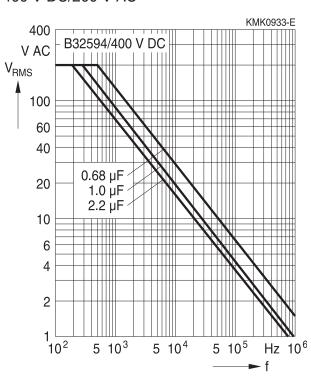
630 V DC/200 V AC

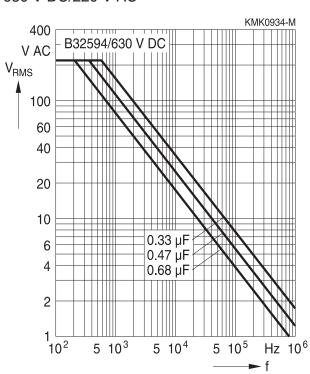

General purpose (wound)

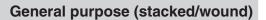
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤55 °C)


For $T_A > 55$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 27.5 mm


100 V DC/63 V AC


250 V DC/160 V AC


400 V DC/200 V AC

630 V DC/220 V AC

Testing and Standards

Test	Reference	Conditions of test	Performance requirements	
Electrical parameters	IEC 60384-2:2005	Voltage proof, 1.4 V _R , Insulation resistance, Capacitance, C Dissipation factor, tan	Within specified limits	
Robust- ness of termina- tions	IEC 60068-2-21:2006	Tensile strength (test Wire diameter $\begin{array}{c c} Tes \\ \hline 0.3 < d_1 < 0.5 \text{ mm} \\ \hline 0.5 < d_1 < 0.8 \text{ mm} \end{array}$	No visible damage Capacitance and tan δ within specified limits	
Resistance to soldering heat Rapid change of tempera-	IEC 60068-2-20:2008, test Tb, method 1A IEC 60384-2:2005	Solder bath temperate immersion for 4 seconds (lead space 10 seconds (lead space T_A = lower category to T_B = upper category to Five cycles, duration to	$\begin{split} &\Delta C/C_0 \leq 2\% \\ & \Delta \tan \delta \leq 0.003 \text{ for } C \leq 1 \mu\text{F} \\ & \Delta \tan \delta \leq 0.002 \text{ for } C > 1 \mu\text{F} \\ & \Delta C/C_0 \leq 5\% \\ & \Delta \tan \delta \leq 0.003 \text{ for } C \leq 1 \mu\text{F} \\ & \Delta \tan \delta \leq 0.002 \text{ for } C > 1 \mu\text{F} \end{split}$	
Vibration	IEC 60384-2:2005	Test F _C : vibration sinudisplacement: 0.75 m Accleration: 98 m/s ² Frequency: 10 Hz 5 Test duration: 3 orthogonals	R _{ins} ≥ 50% of initial limit No visible damage	
Bump	IEC 60384-2:2005	Test Eb: Total 4000 k 390 m/s² mounted on Duration: 6 ms	$\begin{split} \Delta C/C_0 &\leq 5\% \\ \Delta \tan \delta &\leq 0.003 \text{ for } C \leq 1 \mu\text{F} \\ \Delta \tan \delta &\leq 0.002 \text{ for } C > 1 \mu\text{F} \\ R_{\text{ins}} &\geq 50\% \text{ of initial limit} \end{split}$	
Climatic sequence	IEC 60384-2:2005	Dry heat Tb / 16 h Damp heat cyclic, 1st of the state of the the state of the state	$\begin{split} \Delta C/C_0 &\leq 5\% \\ \Delta \tan \delta &\leq 0.005 \text{ for } C \leq 1 \mu\text{F} \\ \Delta \tan \delta &\leq 0.003 \text{ for } C > 1 \mu\text{F} \\ R_{\text{ins}} &\geq 50\% \text{ of initial limit} \end{split}$	
Damp heat, steady state	IEC 60384-2:2005	Test Ca 40 °C / 93% RH / 56 c	days	$\begin{split} \Delta C/C_0 &\leq 5\% \\ \Delta \tan \delta &\leq 0.005 \text{ for } C \leq 1 \mu\text{F} \\ R_{\text{ins}} &\geq 50\% \text{ of initial limit} \end{split}$

General purpose (stacked/wound)

Test	Reference	Conditions of test	Performance
			requirements
Endurance	IEC	85 °C / 1.25 V _R / 2000 hours	No visible damage
Α	60384-2:2005		$ \Delta C/C_0 \le 5\%$
			$ \Delta \tan \delta \le 0.003$ for C $\le 1 \mu$ F
			$ \Delta \tan \delta \le 0.002$ for C > 1 μ F
			$R_{ins} \ge 50\%$ of initial limit
Endurance	IEC	100 °C / 1.25 V _C / 2000 hours	No visible damage
В	60384-2:2005		$ \Delta C/C_0 \le 5\%$
			$ \Delta \tan \delta \le 0.003$ for C $\le 1 \mu$ F
			$ \Delta \tan \delta \le 0.002$ for C > 1 μ F
			$R_{ins} \ge 50\%$ of initial limit

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.

Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10