SN54HC273, SN74HC273 SCLS136F - DECEMBER 1982 - REVISED APRIL 2022 # SNx4HC273 Octal D-Type Flip-Flops With Clear #### 1 Features - Wide operating voltage range of 2 V to 6 V - Outputs can drive up to 10 LSTTL loads - Low power consumption, 80-µA maximum I<sub>CC</sub> - Typical $t_{pd}$ = 12 ns - ±4-mA output drive at 5 V - Low input current of 1-µA maximum - Contain eight flip-flops with single-rail outputs - Direct clear input - Individual data input to each flip-flop - On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. # 2 Applications - Buffer or storage registers - Shift registers - Pattern generators ## 3 Description The SNx4HC273 devices are positive-edge-triggered D-type flip-flops with a direct active low clear ( $\overline{\text{CLR}}$ ) input. Information at the data (D) inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock (CLK) pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When CLK is at either the high or low level, the D input has no effect at the output. #### Device Information<sup>(1)</sup> | PART NUMBER | PACKAGE (PINS) | BODY SIZE (NOM) | |-------------|----------------|--------------------| | SN54HC273J | CDIP (20) | 24.20 mm × 6.92 mm | | SN54HC273W | CFP (20) | 13.09 mm × 6.92 mm | | SN54HC273FK | LCCC (20) | 8.89 mm × 8.89 mm | | SN74HC273D | SOIC (20) | 12.80 mm × 7.50 mm | | SN74HC273DB | SSOP (20) | 7.20 mm × 5.30 mm | | SN74HC273NS | SO (20) | 12.60 mm × 5.30 mm | | SN74HC273N | PDIP (20) | 24.33 mm × 6.35 mm | | SN74HC273PW | TSSOP (20) | 6.50 mm × 4.40 mm | For all available packages, see the orderable addendum at the end of the data sheet. Copyright © 2016, Texas Instruments Incorporated **Functional Block Diagram** ### **Table of Contents** | 1 Features1 | 8 Detailed Description | 11 | |---------------------------------------------|------------------------------------------------------|-----| | 2 Applications1 | 8.1 Overview | | | 3 Description1 | 8.2 Functional Block Diagram | 11 | | 4 Revision History2 | 8.3 Feature Description | .11 | | 5 Pin Configuration and Functions3 | 8.4 Device Functional Modes | .11 | | 6 Specifications4 | 9 Application and Implementation | 12 | | 6.1 Absolute Maximum Ratings4 | 9.1 Application Information | 12 | | 6.2 ESD Ratings – SN74HC2734 | 9.2 Typical Application | 12 | | 6.3 Recommended Operating Conditions4 | 10 Power Supply Recommendations | .14 | | 6.4 Thermal Information5 | 11 Layout | 14 | | 6.5 Electrical Characteristics5 | 11.1 Layout Guidelines | 14 | | 6.6 Electrical Characteristics – SN54HC2735 | 11.2 Layout Example | 14 | | 6.7 Electrical Characteristics – SN74HC2736 | 12 Device and Documentation Support | .15 | | 6.8 Timing Requirements6 | 12.1 Documentation Support | | | 6.9 Timing Requirements – SN54HC2737 | 12.2 Related Links | | | 6.10 Timing Requirements – SN74HC2737 | 12.3 Receiving Notification of Documentation Updates | | | 6.11 Switching Characteristics8 | 12.4 Support Resources | 15 | | 6.12 Switching Characteristics – SN54HC2738 | 12.5 Trademarks | 15 | | 6.13 Switching Characteristics – SN74HC2738 | 12.6 Electrostatic Discharge Caution | 15 | | 6.14 Operating Characteristics9 | 12.7 Glossary | 15 | | 6.15 Typical Characteristics9 | 13 Mechanical, Packaging, and Orderable | | | 7 Parameter Measurement Information10 | Information | 15 | | | | | | | | | | 1 Pavision History | | | NOTE: Page numbers for previous revisions may differ from page numbers in the current version. ### Changes from Revision E (August 2003) to Revision F (April 2022) **Page** Updated the ESD ratings table to fit modern standards......4 Changed package thermal impedance, R<sub>6.IA</sub>, values from: 90.3 to: 122.7 (DB), from: 77.4 to: 109.1 (DW), Updated Power Supply Recommendations and Layout Guidelines sections to include current TI terminology... 14 ### Changes from Revision D (December 1982) to Revision E (July 2016) **Page** - Added Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section............1 # **5 Pin Configuration and Functions** J, W, DB, DW N, NS, or PW Package, 20-Pin CDIP, CFP, SSOP, SOIC, SO, PDIP, or TSSOP (Top View) FK Package, 20-Pin LCCC (Top View) **Table 5-1. Pin Functions** | PIN | | TYPE <sup>(1)</sup> | DESCRIPTION | |-----|-----------------|---------------------|------------------------| | NO. | NAME | ITPE\' | DESCRIPTION | | 1 | CLR | I | Active low clear input | | 2 | 1Q | 0 | Output 1 | | 3 | 1D | I | Input 1 | | 4 | 2D | I | Input 2 | | 5 | 2Q | 0 | Output 2 | | 6 | 3Q | 0 | Output 3 | | 7 | 3D | I | Input 3 | | 8 | 4D | I | Input 4 | | 9 | 4Q | 0 | Output 4 | | 10 | GND | _ | Ground | | 11 | CLK | I | Clock input | | 12 | 5Q | 0 | Output 5 | | 13 | 5D | I | Input 5 | | 14 | 6D | I | Input 6 | | 15 | 6Q | 0 | Output 6 | | 16 | 7Q | 0 | Output 7 | | 17 | 7D | I | Input 7 | | 18 | 8D | I | Input 8 | | 19 | 8Q | 0 | Output 8 | | 20 | V <sub>CC</sub> | _ | Power | <sup>(1)</sup> Signal Types: I = Input, O = Output, I/O = Input or Output. # **6 Specifications** # 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|---------------------------------------------------|---------------------------------------|------|-----|------| | V <sub>CC</sub> | Supply voltage | | -0.5 | 7 | V | | I <sub>IK</sub> | Input clamp current <sup>(2)</sup> | $V_I < 0$ or $V_I > V_{CC}$ | | ±20 | mA | | I <sub>OK</sub> | Output clamp current <sup>(2)</sup> | $V_O < 0$ or $V_O > V_{CC}$ | | ±20 | mA | | Io | Continuous output current | V <sub>O</sub> = 0 to V <sub>CC</sub> | | ±25 | mA | | | Continuous current through V <sub>CC</sub> or GND | | | ±50 | mA | | T <sub>J</sub> | Junction temperature | | | 150 | °C | | T <sub>stg</sub> | Storage temperature | | -65 | 150 | °C | <sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### 6.2 ESD Ratings - SN74HC273 | | | | VALUE | UNIT | |-----------------------------|-------------------------|-----------------------------------------------------------------------|-------|------| | V Floretus etatis disabanna | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | ±2000 | V | | V <sub>(ESD)</sub> | Liectiostatic discharge | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 <sup>(2)</sup> | ±500 | ' | <sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. ### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | NOM | MAX | UNIT | |-----------------|-------------------------------------|-------------------------|------|-----|-----------------|------| | V <sub>CC</sub> | Supply voltage | | 2 | 5 | 6 | V | | | | V <sub>CC</sub> = 2 V | 1.5 | | | | | V <sub>IH</sub> | High-level input voltage | V <sub>CC</sub> = 4.5 V | 3.15 | | | V | | | | V <sub>CC</sub> = 6 V | 4.2 | | | | | V <sub>IL</sub> | | V <sub>CC</sub> = 2 V | | | 0.5 | | | | Low-level input voltage | V <sub>CC</sub> = 4.5 V | | | 1.35 | V | | | | V <sub>CC</sub> = 6 V | | | 1.8 | | | VI | Input voltage | | 0 | | V <sub>CC</sub> | V | | Vo | Output voltage | | 0 | | V <sub>CC</sub> | V | | | | V <sub>CC</sub> = 2 V | | | 1000 | | | Δt/Δν | Input transition rise and fall time | V <sub>CC</sub> = 4.5 V | | | 500 | ns | | | | V <sub>CC</sub> = 6 V | | | 400 | | | _ | Operating free air temperature | SN54HC273 | -55 | | 125 | °C | | T <sub>A</sub> | Operating free-air temperature | SN74HC273 | -40 | | 85 | C | <sup>(1)</sup> All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated <sup>(2)</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed. <sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. ### **6.4 Thermal Information** | | | | SN74HC273 | | | | | |------------------------|-------------------------------------------------------|-----------|-----------|----------|---------|------------|------| | | THERMAL METRIC | DW (SOIC) | DB (SSOP) | N (PDIP) | NS (SO) | PW (TSSOP) | | | | | 20 PINS | UNIT | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance <sup>(1)</sup> | 109.1 | 122.7 | 84.6 | 113.4 | 131.8 | °C/W | | R <sub>θJC (top)</sub> | Junction-to-case (top) thermal resistance | 76 | 81.6 | 72.5 | 78.6 | 72.2 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 77.6 | 77.5 | 65.3 | 78.4 | 82.8 | °C/W | | $\Psi_{JT}$ | Junction-to-top characterization parameter | 51.5 | 46.1 | 55.3 | 47.1 | 21.5 | °C/W | | $\Psi_{JB}$ | Junction-to-board characterization parameter | 77.1 | 77.1 | 65.2 | 78.1 | 82.4 | °C/W | | R <sub>0</sub> JC(bot) | Junction-to-case (bottom) thermal resistance | N/A | N/A | N/A | N/A | N/A | °C/W | <sup>(1)</sup> For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. ### 6.5 Electrical Characteristics T<sub>A</sub> = 25°C (unless otherwise noted) | PARAMETER | , | TEST CONDITIONS | | | | MAX | UNIT | |-----------------|-----------------------------------------------------|--------------------------------------------------|-------------------------|------|-------|------|------| | | | | V <sub>CC</sub> = 2 V | 1.9 | 1.998 | | | | | | I <sub>OH</sub> = -20 μA | V <sub>CC</sub> = 4.5 V | 4.4 | 4.499 | | | | V <sub>OH</sub> | $V_I = V_{IH}$ or $V_{IL}$ | | V <sub>CC</sub> = 6 V | 5.9 | 5.999 | | V | | | | $I_{OH} = -4 \text{ mA}, V_{CC} = 4.5 \text{ V}$ | | 3.98 | 4.3 | | | | | | $I_{OH} = -5.2 \text{ mA}, V_{CC} = 6 \text{ V}$ | | 5.48 | 5.8 | | | | | | I <sub>OL</sub> = 20 μA | V <sub>CC</sub> = 2 V | | 0.002 | 0.1 | | | | | | V <sub>CC</sub> = 4.5 V | | 0.001 | 0.1 | | | V <sub>OL</sub> | $V_I = V_{IH}$ or $V_{IL}$ | | V <sub>CC</sub> = 6 V | | 0.001 | 0.1 | V | | | | I <sub>OL</sub> = 4 mA, V <sub>CC</sub> = 4.5 V | | | 0.17 | 0.26 | | | | | I <sub>OL</sub> = 5.2 mA, V <sub>CC</sub> = 6 V | | | 0.15 | 0.26 | | | I <sub>1</sub> | $V_I = V_{CC}$ or 0, $V_{CC} = 6 V$ | $V_1 = V_{CC}$ or 0, $V_{CC} = 6 V$ | | | ±0.1 | ±100 | nA | | Icc | $V_{I} = V_{CC}$ or 0, $I_{O} = 0$ , $V_{CC} = 6$ V | | | | | 8 | μA | | C <sub>i</sub> | V <sub>CC</sub> = 2 V to 6 V | | | | 3 | 10 | pF | ### 6.6 Electrical Characteristics - SN54HC273 over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | · | MIN | TYP | MAX | UNIT | |-----------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------|-----|------|-----|------| | V <sub>OH</sub> | | | V <sub>CC</sub> = 2 V | 1.9 | | | | | | | I <sub>OH</sub> = -20 μA | V <sub>CC</sub> = 4.5 V | 4.4 | | | | | | $V_I = V_{IH}$ or $V_{IL}$ | | V <sub>CC</sub> = 6 V | 5.9 | | | V | | | | I <sub>OH</sub> = -4 mA, V <sub>CC</sub> = 4.5 V | · | 3.7 | | | | | | | I <sub>OH</sub> = -5.2 mA, V <sub>CC</sub> = 6 V | | 5.2 | | | | | | | | V <sub>CC</sub> = 2 V | | | 0.1 | | | | | I <sub>OL</sub> = 20 μA | V <sub>CC</sub> = 4.5 V | | | 0.1 | | | V <sub>OL</sub> | $V_I = V_{IH}$ or $V_{IL}$ | V <sub>CC</sub> = 6 V | | | | 0.1 | V | | | | I <sub>OL</sub> = 4 mA, V <sub>CC</sub> = 4.5 V | | | | 0.4 | | | | | I <sub>OL</sub> = 5.2 mA, V <sub>CC</sub> = V | | | | 0.4 | | | I <sub>I</sub> | V <sub>I</sub> = V <sub>CC</sub> or 0, V <sub>CC</sub> = 6 V | | | ± | 1000 | nA | | | Icc | $V_{I} = V_{CC} \text{ or } 0, I_{O} = 0, V_{CC} = 0$ | = 6 V | | | | 160 | μΑ | # 6.6 Electrical Characteristics - SN54HC273 (continued) over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------|------------------------------|-----|-----|-----|------| | C <sub>i</sub> | V <sub>CC</sub> = 2 V to 6 V | | | 10 | pF | #### 6.7 Electrical Characteristics - SN74HC273 over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |-----------------|---------------------------------------------------|-------------------------------------------------|-------------------------|------|-----|-------|------| | | | | V <sub>CC</sub> = 2 V | 1.9 | | | | | | | I <sub>OH</sub> = -20 μA | V <sub>CC</sub> = 4.5 V | 4.4 | | | | | V <sub>OH</sub> | $V_I = V_{IH}$ or $V_{IL}$ | | V <sub>CC</sub> = 6 V | 5.9 | | | V | | | | $I_{OH} = -4 \text{ mA}, V_{CC} = 4.5$ | V | 3.84 | | | | | | | $I_{OH} = -5.2 \text{ mA}, V_{CC} = 6$ | V | 5.34 | | | | | | | | V <sub>CC</sub> = 2 V | | | 0.1 | | | | $V_{I} = V_{IH}$ or $V_{IL}$ | | V <sub>CC</sub> = 4.5 V | | | 0.1 | | | V <sub>OL</sub> | | | V <sub>CC</sub> = 6 V | | | 0.1 | V | | | | I <sub>OL</sub> = 4 mA, V <sub>CC</sub> = 4.5 V | , | | | 0.33 | | | | | I <sub>OL</sub> = 5.2 mA, V <sub>CC</sub> = 6 V | | | | 0.33 | | | l <sub>l</sub> | $V_I = V_{CC}$ or 0, $V_{CC} = 6$ | = V <sub>CC</sub> or 0, V <sub>CC</sub> = 6 V | | | | ±1000 | nA | | Icc | $V_{I} = V_{CC} \text{ or } 0, I_{O} = 0, V_{CC}$ | / <sub>CC</sub> = 6 V | | | | 80 | μA | | Ci | V <sub>CC</sub> = 2 V to 6 V | | | | | 10 | pF | # 6.8 Timing Requirements T<sub>A</sub> = 25°C (unless otherwise noted) | | · | | | MIN MA | XX UNIT | |---------------------|----------------------------|-----------------|-------------------------|--------|---------| | | | | V <sub>CC</sub> = 2 V | | 5 | | f <sub>clock</sub> | Clock frequency | | V <sub>CC</sub> = 4.5 V | | 27 MHz | | | | | V <sub>CC</sub> = 6 V | | 32 | | | | | V <sub>CC</sub> = 2 V | 80 | | | t <sub>w</sub> Pul: | | CLR low | V <sub>CC</sub> = 4.5 V | 16 | | | | Pulse duration | | V <sub>CC</sub> = 6 V | 14 | no | | | Puise duration | CLK high or low | V <sub>CC</sub> = 2 V | 80 | ns | | | | | V <sub>CC</sub> = 4.5 V | 16 | | | | | | V <sub>CC</sub> = 6 V | 14 | | | | | | V <sub>CC</sub> = 2 V | 100 | | | | | Data | V <sub>CC</sub> = 4.5 V | 20 | | | | Satura tima hafara CLKA | | V <sub>CC</sub> = 6 V | 17 | ns | | t <sub>su</sub> | Setup time before CLK↑ | | V <sub>CC</sub> = 2 V | 100 | 115 | | | | CLR inactive | V <sub>CC</sub> = 4.5 V | 20 | | | | | | V <sub>CC</sub> = 6 V | 17 | | | | | | V <sub>CC</sub> = 2 V | 0 | | | t <sub>h</sub> | Hold time, data after CLK↑ | | V <sub>CC</sub> = 4.5 V | 0 | ns | | | | | V <sub>CC</sub> = 6 V | 0 | | # 6.9 Timing Requirements – SN54HC273 over recommended operating free-air temperature range (unless otherwise noted) | | | | | MIN MAX | UNIT | |--------------------|----------------------------|-----------------|-------------------------|---------|-------| | | | | V <sub>CC</sub> = 2 V | 4 | 1 | | f <sub>clock</sub> | Clock frequency | ock frequency | | 18 | B MHz | | | | | V <sub>CC</sub> = 6 V | 2. | I | | | | | V <sub>CC</sub> = 2 V | 120 | | | | | CLR low | V <sub>CC</sub> = 4.5 V | 24 | | | | Pulse duration | | V <sub>CC</sub> = 6 V | 20 | 200 | | t <sub>w</sub> | ruise duration | CLK high or low | V <sub>CC</sub> = 2 V | 120 | ns | | | | | V <sub>CC</sub> = 4.5 V | 24 | | | | | | V <sub>CC</sub> = 6 V | 20 | | | | | | V <sub>CC</sub> = 2 V | 150 | | | | | Data | V <sub>CC</sub> = 4.5 V | 30 | | | | Setup time before CLK↑ | | V <sub>CC</sub> = 6 V | 25 | ns | | t <sub>su</sub> | Setup time before CLK | | V <sub>CC</sub> = 2 V | 150 | 115 | | | | CLR inactive | V <sub>CC</sub> = 4.5 V | 30 | | | | | | V <sub>CC</sub> = 6 V | 25 | | | | | | V <sub>CC</sub> = 2 V | 0 | | | t <sub>h</sub> | Hold time, data after CLK↑ | | V <sub>CC</sub> = 4.5 V | 0 | ns | | | | | V <sub>CC</sub> = 6 V | 0 | | # 6.10 Timing Requirements – SN74HC273 over recommended operating free-air temperature range (unless otherwise noted) | | - ' | 1 3 ( | · | MIN MA | K UNIT | |--------------------|----------------------------|-----------------|-------------------------|--------|--------| | | | | V <sub>CC</sub> = 2 V | | 4 | | f <sub>clock</sub> | Clock frequency | | V <sub>CC</sub> = 4.5 V | 2 | 1 MHz | | | | | V <sub>CC</sub> = 6 V | 2 | 5 | | | Pulse duration | | V <sub>CC</sub> = 2 V | 100 | | | | | CLR low | V <sub>CC</sub> = 4.5 V | 20 | | | 4 | | | V <sub>CC</sub> = 6 V | 17 | ns | | t <sub>w</sub> | Puise duration | | V <sub>CC</sub> = 2 V | 100 | 115 | | | | CLK high or low | V <sub>CC</sub> = 4.5 V | 20 | | | | | | V <sub>CC</sub> = 6 V | 17 | | | | | | V <sub>CC</sub> = 2 V | 125 | | | | | Data | V <sub>CC</sub> = 4.5 V | 25 | | | 4 | Satura tima hafara CLIKA | | V <sub>CC</sub> = 6 V | 21 | ns | | t <sub>su</sub> | Setup time before CLK↑ | | V <sub>CC</sub> = 2 V | 125 | 115 | | | | CLR inactive | V <sub>CC</sub> = 4.5 V | 25 | | | | | | V <sub>CC</sub> = 6 V | 21 | | | | | | V <sub>CC</sub> = 2 V | 0 | | | t <sub>h</sub> | Hold time, data after CLK↑ | | V <sub>CC</sub> = 4.5 V | 0 | ns | | | | | V <sub>CC</sub> = 6 V | 0 | | # **6.11 Switching Characteristics** $T_A = 25$ °C and $C_L = 50$ pF (unless otherwise noted; see Figure 7-1) | PARAMETER | TEST CONDIT | IONS | MIN | TYP | MAX | UNIT | |------------------|----------------------------------|-------------------------|-----|-----|-----|------| | | | V <sub>CC</sub> = 2 V | 5 | 11 | | | | f <sub>max</sub> | | V <sub>CC</sub> = 4.5 V | 27 | 50 | | MHz | | | | V <sub>CC</sub> = 6 V | 32 | 60 | | | | | | V <sub>CC</sub> = 2 V | | 55 | 160 | | | t <sub>PHL</sub> | From CLR (input) to any (output) | V <sub>CC</sub> = 4.5 V | | 15 | 32 | ns | | | | V <sub>CC</sub> = 6 V | | 12 | 27 | | | | | V <sub>CC</sub> = 2 V | | 56 | 160 | | | t <sub>pd</sub> | From CLK (input) to any (output) | V <sub>CC</sub> = 4.5 V | | 15 | 32 | ns | | | | V <sub>CC</sub> = 6 V | | 13 | 27 | | | t <sub>t</sub> | To any (output) | V <sub>CC</sub> = 2 V | | 38 | 75 | | | | | V <sub>CC</sub> = 4.5 V | | 8 | 15 | ns | | | | V <sub>CC</sub> = 6 V | | 6 | 13 | | # 6.12 Switching Characteristics - SN54HC273 over recommended operating free-air temperature range, C<sub>L</sub> = 50 pF (unless otherwise noted; see Figure 7-1) | PARAMETER | TEST COND | TEST CONDITIONS | | | | |------------------|----------------------------------|-------------------------|----|-----|-----| | | | V <sub>CC</sub> = 2 V | 4 | | | | $f_{\text{max}}$ | | V <sub>CC</sub> = 4.5 V | 18 | | MHz | | | | V <sub>CC</sub> = 6 V | 21 | | | | | | V <sub>CC</sub> = 2 V | | 240 | | | t <sub>PHL</sub> | From CLR (input) to any (output) | V <sub>CC</sub> = 4.5 V | | 48 | ns | | | | V <sub>CC</sub> = 6 V | | 41 | | | | | V <sub>CC</sub> = 2 V | | 240 | | | t <sub>pd</sub> | From CLK (input) to any (output) | V <sub>CC</sub> = 4.5 V | | 48 | ns | | | | V <sub>CC</sub> = 6 V | | 41 | | | t <sub>t</sub> | | V <sub>CC</sub> = 2 V | | 110 | | | | To any (output) | V <sub>CC</sub> = 4.5 V | | 22 | ns | | | | V <sub>CC</sub> = 6 V | | 19 | | # 6.13 Switching Characteristics - SN74HC273 over recommended operating free-air temperature range, C<sub>L</sub> = 50 pF (unless otherwise noted; see Figure 7-1) | PARAMETER | TEST CONDITIONS | | MIN | MAX | UNIT | |------------------|----------------------------------|-------------------------|-----|-----|------| | | | V <sub>CC</sub> = 2 V | 4 | | | | f <sub>max</sub> | | V <sub>CC</sub> = 4.5 V | 21 | | MHz | | | | V <sub>CC</sub> = 6 V | 25 | | | | | | V <sub>CC</sub> = 2 V | | 200 | | | t <sub>PHL</sub> | From CLR (input) to any (output) | V <sub>CC</sub> = 4.5 V | | 40 | ns | | | | V <sub>CC</sub> = 6 V | | 34 | | | | | V <sub>CC</sub> = 2 V | | 200 | | | t <sub>pd</sub> | | V <sub>CC</sub> = 4.5 V | | 40 | ns | | | | V <sub>CC</sub> = 6 V | | 34 | | # 6.13 Switching Characteristics - SN74HC273 (continued) over recommended operating free-air temperature range, C<sub>L</sub> = 50 pF (unless otherwise noted; see Figure 7-1) | PARAMETER | TEST CONDITIONS | MIN MAX | UNIT | | |----------------|-----------------|-------------------------|------|----| | | | V <sub>CC</sub> = 2 V | 95 | | | t <sub>t</sub> | To any (output) | V <sub>CC</sub> = 4.5 V | 19 | ns | | | | V <sub>CC</sub> = 6 V | 16 | 1 | # **6.14 Operating Characteristics** T<sub>A</sub> = 25°C | | PARAMETER | TEST CONDITIONS | TYP | UNIT | |----------|---------------------------------------------|-----------------|-----|------| | $C_{pd}$ | Power dissipation capacitance per flip-flop | No load | 35 | pF | # **6.15 Typical Characteristics** Figure 6-1. Max $t_{pd}$ vs $V_{CC}$ #### 7 Parameter Measurement Information NOTES: A. C<sub>L</sub> includes probe and test-fixture capacitance. - B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR $\leq$ 1 MHz, $Z_O = 50 \ \Omega$ , $t_\Gamma = 6 \ ns$ , $t_f = 6 \ ns$ . - C. For clock inputs, $f_{\mbox{max}}$ is measured when the input duty cycle is 50%. - D. The outputs are measured one at a time with one input transition per measurement. - E. tpLH and tpHL are the same as tpd. Figure 7-1. Load Circuit and Voltage Waveforms # **8 Detailed Description** ### 8.1 Overview The SNx4HC273 contains eight flip-flops with single-rail outputs with individual data input to each flip-flop. The outputs can drive up to 10 LSTTL loads. The device has direct active low clear input. # 8.2 Functional Block Diagram # **8.3 Feature Description** The SNx4HC273 has low power consumption with a maximum $_{CC}$ of 80 $\mu A$ . The typical $t_{pd}$ for the SNx4HC273 is 12 ns and the output drive is ±4 mA at 5 V. The SNx4HC273 also has very low input current, with the maximum set at 1 µA. #### 8.4 Device Functional Modes Table 8-1 lists the functional modes of the SNx4HC273. Table 8-1. Function Table (Each Flip-Flop) | | OUTPUT | | | |-----|--------|---|-------| | CLR | CLK | D | Q | | L | Х | Х | L | | Н | 1 | Н | Н | | Н | 1 | L | L | | Н | L | Х | $Q_0$ | ## 9 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 9.1 Application Information The SNx4HC273 is octal D Flip flop with active low clear input. It has low input current and low power consumption. The D flip-flop can be used as a Toggle flip flop using an XOR gate at the input. The output toggles from the previous state whenever the T input is high. ### 9.2 Typical Application Copyright © 2016, Texas Instruments Incorporated #### 9.2.1 Design Requirements This SNx4Hc273 device uses CMOS technology and has balanced output drive. ### 9.2.2 Detailed Design Procedure - 1. Recommended input conditions: - Rise time and fall time specifications: see ( $\Delta t/\Delta V$ ) in *Recommended Operating Conditions*. - Specified high and low levels: see (V<sub>IH</sub> and V<sub>IL</sub>) in *Recommended Operating Conditions*. - Inputs are not overvoltage tolerant and must not be above any valid V<sub>CC</sub> as per Recommended Operating Conditions. - 2. Absolute maximum output conditions: - Continuos output currents must not exceed (I<sub>O</sub> max) per output and must not exceed total current (continuous current through V<sub>CC</sub> or GND) for the part. These limits are located in the Absolute Maximum Ratings. - Outputs must not be pulled above V<sub>CC</sub>. # 9.2.3 Application Curve Figure 9-1. Maximum Transition Time vs $V_{\text{CC}}$ # 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V<sub>CC</sub> terminal should have a good bypass capacitor to prevent power disturbance. A 0.1-µF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1-µF and 1-µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results. ### 11 Layout #### 11.1 Layout Guidelines When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more sense for the logic function or is more convenient. ### 11.2 Layout Example Figure 11-1. SNx4HC273 Layout # 12 Device and Documentation Support ### **12.1 Documentation Support** #### 12.1.1 Related Documentation For related documentation, see the following: Texas Instruments, Implications of Slow or Floating CMOS Inputs application report #### 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 12-1. Related Links | PARTS | PRODUCT FOLDER | SAMPLE & BUY | TECHNICAL DOCUMENTS | TOOLS &<br>SOFTWARE | SUPPORT & COMMUNITY | |-----------|----------------|--------------|---------------------|---------------------|---------------------| | SN54HC273 | Click here | | SN74HC273 | Click here | ### 12.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 12.4 Support Resources TI E2E<sup>™</sup> support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 12.5 Trademarks TI E2E<sup>™</sup> is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 12.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. #### 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. www.ti.com 18-Jul-2025 # **PACKAGING INFORMATION** | Orderable part number | Status (1) | Material type | Package Pins | Package qty Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|------------|---------------|----------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------------------------| | 5962-8409901VRA | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 5962-8409901VR<br>A<br>SNV54HC273J | | 5962-8409901VRA.A | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 5962-8409901VR<br>A<br>SNV54HC273J | | 5962-8409901VSA | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 5962-8409901VS<br>A<br>SNV54HC273W | | 5962-8409901VSA.A | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 5962-8409901VS<br>A<br>SNV54HC273W | | 84099012A | Active | Production | LCCC (FK) 20 | 55 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 84099012A<br>SNJ54HC<br>273FK | | 8409901RA | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 8409901RA<br>SNJ54HC273J | | 8409901SA | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 8409901SA<br>SNJ54HC273W | | JM38510/65601BRA | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | JM38510/<br>65601BRA | | JM38510/65601BRA.A | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | JM38510/<br>65601BRA | | JM38510/65601BSA | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | JM38510/<br>65601BSA | | JM38510/65601BSA.A | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | JM38510/<br>65601BSA | | M38510/65601BRA | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | JM38510/<br>65601BRA | | M38510/65601BSA | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | JM38510/<br>65601BSA | | SN54HC273J | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | SN54HC273J | | SN54HC273J.A | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | SN54HC273J | | SN74HC273DBR | Active | Production | SSOP (DB) 20 | 2000 LARGE T&R | Yes | NIPDAU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | www.ti.com 18-Jul-2025 | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|----------|---------------|-----------------|-----------------------|-----|-------------------------------|----------------------------|--------------|-------------------------------| | SN74HC273DBR.A | Active | Production | SSOP (DB) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273DW | Obsolete | Production | SOIC (DW) 20 | - | - | Call TI | Call TI | -40 to 85 | HC273 | | SN74HC273DWR | Active | Production | SOIC (DW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273DWR.A | Active | Production | SOIC (DW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273DWRE4 | Active | Production | SOIC (DW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273DWRG4 | Active | Production | SOIC (DW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273DWRG4.A | Active | Production | SOIC (DW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273N | Active | Production | PDIP (N) 20 | 20 TUBE | Yes | NIPDAU | N/A for Pkg Type | -40 to 85 | SN74HC273N | | SN74HC273N.A | Active | Production | PDIP (N) 20 | 20 TUBE | Yes | NIPDAU | N/A for Pkg Type | -40 to 85 | SN74HC273N | | SN74HC273NE4 | Active | Production | PDIP (N) 20 | 20 TUBE | Yes | NIPDAU | N/A for Pkg Type | -40 to 85 | SN74HC273N | | SN74HC273NSR | Active | Production | SOP (NS) 20 | 2000 LARGE T&R | Yes | NIPDAU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273NSR.A | Active | Production | SOP (NS) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273PW | Obsolete | Production | TSSOP (PW) 20 | - | - | Call TI | Call TI | -40 to 85 | HC273 | | SN74HC273PWR | Active | Production | TSSOP (PW) 20 | 2000 LARGE T&R | Yes | NIPDAU NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273PWR.A | Active | Production | TSSOP (PW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273PWRG4 | Active | Production | TSSOP (PW) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | HC273 | | SN74HC273PWT | Obsolete | Production | TSSOP (PW) 20 | - | - | Call TI | Call TI | -40 to 85 | HC273 | | SNJ54HC273FK | Active | Production | LCCC (FK) 20 | 55 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 84099012A<br>SNJ54HC<br>273FK | | SNJ54HC273FK.A | Active | Production | LCCC (FK) 20 | 55 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 84099012A<br>SNJ54HC<br>273FK | | SNJ54HC273J | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 8409901RA<br>SNJ54HC273J | | SNJ54HC273J.A | Active | Production | CDIP (J) 20 | 20 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 8409901RA<br>SNJ54HC273J | | SNJ54HC273W | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 8409901SA<br>SNJ54HC273W | | SNJ54HC273W.A | Active | Production | CFP (W) 20 | 25 TUBE | No | SNPB | N/A for Pkg Type | -55 to 125 | 8409901SA<br>SNJ54HC273W | <sup>(1)</sup> Status: For more details on status, see our product life cycle. 18-Jul-2025 www.ti.com (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN54HC273, SN54HC273-SP, SN74HC273: Catalog: SN74HC273, SN54HC273 Automotive: SN74HC273-Q1, SN74HC273-Q1 Military: SN54HC273 Space: SN54HC273-SP NOTE: Qualified Version Definitions: Addendum-Page 3 # PACKAGE OPTION ADDENDUM www.ti.com 18-Jul-2025 - Catalog TI's standard catalog product - Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects - Military QML certified for Military and Defense Applications - Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application # **PACKAGE MATERIALS INFORMATION** www.ti.com 30-Jun-2025 ### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|-----------------------------------------------------------| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### \*All dimensions are nominal | Device | Package<br>Type | Package<br>Drawing | | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74HC273DBR | SSOP | DB | 20 | 2000 | 330.0 | 16.4 | 8.2 | 7.5 | 2.5 | 12.0 | 16.0 | Q1 | | SN74HC273DWR | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.9 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | SN74HC273DWRG4 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | SN74HC273NSR | SOP | NS | 20 | 2000 | 330.0 | 24.4 | 8.4 | 13.0 | 2.5 | 12.0 | 24.0 | Q1 | | SN74HC273PWR | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | www.ti.com 30-Jun-2025 #### \*All dimensions are nominal | 7 111 41111011010110 410 11011111141 | | | | | | | | |--------------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | SN74HC273DBR | SSOP | DB | 20 | 2000 | 356.0 | 356.0 | 35.0 | | SN74HC273DWR | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | SN74HC273DWRG4 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | SN74HC273NSR | SOP | NS | 20 | 2000 | 367.0 | 367.0 | 45.0 | | SN74HC273PWR | TSSOP | PW | 20 | 2000 | 356.0 | 356.0 | 35.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 30-Jun-2025 ### **TUBE** \*All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |--------------------|--------------|--------------|------|-----|--------|--------|--------|--------| | 5962-8409901VSA | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | 5962-8409901VSA.A | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | 84099012A | FK | LCCC | 20 | 55 | 506.98 | 12.06 | 2030 | NA | | 8409901SA | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | JM38510/65601BSA | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | JM38510/65601BSA.A | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | M38510/65601BSA | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | SN74HC273N | N | PDIP | 20 | 20 | 506 | 13.97 | 11230 | 4.32 | | SN74HC273N.A | N | PDIP | 20 | 20 | 506 | 13.97 | 11230 | 4.32 | | SN74HC273NE4 | N | PDIP | 20 | 20 | 506 | 13.97 | 11230 | 4.32 | | SNJ54HC273FK | FK | LCCC | 20 | 55 | 506.98 | 12.06 | 2030 | NA | | SNJ54HC273FK.A | FK | LCCC | 20 | 55 | 506.98 | 12.06 | 2030 | NA | | SNJ54HC273W | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | | SNJ54HC273W.A | W | CFP | 20 | 25 | 506.98 | 26.16 | 6220 | NA | #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-150. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # **MECHANICAL DATA** # NS (R-PDSO-G\*\*) # 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. 8.89 x 8.89, 1.27 mm pitch LEADLESS CERAMIC CHIP CARRIER This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. **INSTRUMENTS** www.ti.com # N (R-PDIP-T\*\*) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. SOIC #### NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. - 5. Reference JEDEC registration MS-013. SOIC NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SOIC NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # W (R-GDFP-F20) # CERAMIC DUAL FLATPACK NOTES: - A. All linear dimensions are in inches (millimeters). - This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only. E. Falls within Mil—Std 1835 GDFP2—F20 #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated